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A new regulatory approach is needed to characterize
peak pesticide concentrations in surface waters over a
range of watershed scales. Methods now in common use
rely upon idealized edge-of-field scenarios that ignore
scaling effects. Although some watershed-scale regulatory
models are available, their complexity generally prevents
them from being used during the pesticide registration decision
process, even though nearly all exposure to both humans
and aquatic organisms can occur only at this scale.
The theory of fractal geometry offers a simpler method
for addressing this regulatory need. Mandelbrot described
rivers as “space-filling curves” (Mandelbrot, B. B. The
Fractal Geometry of Nature; Freeman: New York, 1983), a
class of fractal objects implying two useful properties we
exploit in this work. The first is a simple power-law
relationship in which log-log plots of maximum daily
concentrations as a function of watershed area tend to
be linear with a negative slope. We demonstrate that the
extrapolation of such plots down to smaller watersheds
agrees with edge-of-field concentrations predicted using the
Pesticide Root Zone Model, but only when the modeling
results are properly adjusted for use intensity within the
watershed. We also define a second useful property, “scale-
invariant dispersion”, in which concentrations are well
described by a single analytical solution to the convective-
dispersion equation, regardless of scale. Both of these
findings make it possible to incorporate the effect of watershed
scale directly into regulatory assessments.

Introduction
As part of the pesticide registration decision process, the
U.S. EPA and other regulatory agencies around the world

currently assess potential concentrations of crop protection
chemicals and their degradates in surface water using
conservative scenarios evaluated with mechanistic models.
For instance, the Pesticide Root Zone Model (PRZM) and the
Exposure Analysis Modeling System (EXAMS) model are used
to estimate concentrations in a standardized farm pond for
ecological risk assessments and in an index reservoir for
drinking water assessments (1). Neither of these assessment
methods considers potential scaling affects associated with
watershed area. The watershed-scale regulatory models that
are available, such as HSPF and SWAT, are not routinely
used for pesticide registration decisions (1). Instead, PRZM
is used to generate runoff estimates from a uniform agri-
cultural field, and these edge-of-field runoff loadings are fed
directly into a standard surface water body, which is simulated
using the EXAMS model.

In the case of the farm pond, the surface water body is
assumed to be a completely mixed body of constant volume.
Although residues are introduced into the surface water body
via runoff, the pond is assumed to have no water discharge,
so pond residues remain until they degrade, adsorb to
sediment, or volatilize. It is also assumed that there is
conservative transport of runoff to the reservoir, without any
losses or attenuation due to degradation or sorption. Although
one could conceive of the existence of the farm pond scenario,
such situations are actually quite rare.

These limitations become even more important for larger-
scale drinking water assessments. The simplified hydrology
along with conservative assumptions regarding use in the
watershed, spray drift, and pesticide parameters result in
maximum daily concentrations 2 or more orders of mag-
nitude higher than actually observed in targeted drinking
water monitoring studies (2). The objective of the present
study is to explore new ways to include these scaling effects
via the relatively new science of fractal geometry (3).

Fractal geometry (i.e., fractal theory) has been used to
describe the spatial scaling behavior of environmental
variables from microscales within soil pores to large river
basins. Burrough (4) and Green and Erskine (5), for example,
showed that several soil and landscape variables displayed
fractal behavior at the field scale. Rodriguez-Iturbe and
Rinaldo (6) showed how fractals have been applied to
landscape and river geometries up to basin scales in a manner
consistent with geomorphological properties for minimizing
the total energy expenditure. In addition to the morphology,
transient hydrologic responses can follow fractal relationships
according to the theory they defined as the “geomorpho-
logical instantaneous unit hydrograph” (7), describing the
travel-time distribution of water particles in rivers. It logically
should follow that chemical concentrations would display
similar fractal behavior. To our knowledge, however, fractals
have not been previously applied to estimating pesticide
concentrations in rivers.

Previous work on the scaling of pesticides in surface water
has focused mainly on the effects of scale on annual total
loads, in which it was found that annual loads of a relatively
persistent pesticide were independent of scale, when ex-
pressed as a percentage of the amount applied annually (8).
Similar work with less persistent products, however, found
that such load percentages decreased with scale, as would
be anticipated due to losses during transport (9). Baker and
Richards (10) discussed the effect of scale on the pattern of
concentrations in surface water, and they reported that higher
peak concentrations were observed in smaller watersheds;
however, they did not relate this behavior to fractal theory.
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Here, we will test the hypothesis that “peak” pesticide
concentrations in rivers (defined as the maximum daily
concentration within 1 year or the 99.7th percentile) scale
with watershed area according to fractal theory, thus offering
an improved method for estimating peak concentrations for
regulatory purposes. We first present the data sources used
in our study and then briefly describe the modeling theory
and methodology. We conclude with a discussion of our
observations and their regulatory consequence. A consider-
able amount of data and modeling methods investigated in
this study cannot be included in the paper due to size
constraints; however, they are available in the Supporting
Information.

Data Sources
WQL Data Set. We studied two large monitoring data sets
in the United States (Figure 1). The first (denoted the WQL
data set) is from the Water Quality Laboratory of Heidelberg
College in Tiffin, OH (11). The four rivers most intensively
monitored by the WQL are shown in greater detail in Figure
2. For these four rivers, WQL has a temporally rich data set
for a suite of more than a dozen pesticides from 1984 to
present.

The WQL sampling program is stratified by season and
flow, with sampling frequencies of several times daily during
flow events in the spring and summer months, when pesticide
concentrations are highest. Figure 3 contains an example of
WQL data for the year 1996. This sampling regimen makes
it possible to directly determine annual maximum daily
concentrations (corresponding to a 99.7th percentile within
1 year) and lower quantiles, such as 95th and 90th. These
three percentiles are given as a log-log plot versus watershed
area for streamflow and a number of pesticides in Figure 4.

The pesticide concentrations in Figure 4 are normalized to
a use intensity of 1 kg/ha here and elsewhere in this paper
based on estimation techniques explained more fully in the
Supporting Information.

Some very important points emerge from the data in
Figure 4. First, the 99.7th percentile (corresponding to
maximum daily) concentrations and daily streamflows are
2-10 times higher than the 95th percentile concentrations
and flows, depending on scale. Second, the 95th percentile
concentrations and daily streamflows happen to be relatively
independent of scale in these four watersheds. However, as
described extensively by Baker and Richards (10), both peak
concentrations and peak daily streamflows are strongly
impacted by scale. In general, sharp peaks of short duration
would be expected for small watersheds while broad peaks
of longer duration would be expected for larger watersheds.
This is also demonstrated by similar changes in the stream-
flows. These differences in hydrograph/chemograph shape
help explain the changes in slope in the lines in Figure 4. As
watershed area decreases, the maximum daily concentration
(99.7th percentile) tends to increase, reflecting the higher
peak concentrations. However, as watershed area decreases,
the 90th percentile concentration decreases because of the
sharper peak shape in the smaller watersheds.

Because of the large change in the use of the various
chloroacetanilides during the 1990s, the graph of total
chloroacetanilides (Figure 4h) may be more accurate than
those for the individual products. In fact, the total value
displays the expected scaling behavior while individual
products may not, probably due to complementary errors in
the use intensity estimates that were utilized in the nor-
malization procedure.

FIGURE 1. Blue triangles represent the centroids of 89 USGS watersheds included in this modeling. WARP is the name of a regression
model being developed from these data by USGS. The inset map shows the four sites being monitored by the Heidelberg College Water
Quality Laboratory (WQL) in Tiffin, OH.
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USGS Data Set. The other monitoring data set we studied
is from an ongoing U.S. Geological Survey regression
modeling study (12). It contains data from the USGS National
Water Quality Assessment (NAWQA) Program and the
National Stream Quality Accounting Network (NASQAN). The
long-term goals of the NAWQA program are to describe the
status and trends in the quality of a large, representative part
of the nation’s surface water and groundwater resources and
to provide a sound, scientific understanding of the primary
natural and human factors affecting the quality of these
resources (13, 14). NASQAN measures chemical concentra-
tions in the nation’s largest rivers.

Depth- and width-integrated samples were collected as
part of the NAWQA program about every 1-3 weeks during
the growing season and approximately monthly during the
rest of the year. The NASQAN program collects samples
approximately monthly with several additional samples
collected during periods of high streamflow.

Modeling Methods
Estimating Maximum Daily Concentrations in the USGS
Data Set. To estimate annual maximum daily concentrations
(MDC) in the USGS data set, we sought to develop a regression
equation relating MDC to lower observed quantiles of
pesticide concentration (P95 and lower, if useful) and other
available ancillary data. The regression method we developed
is based on the reasonable assumption that the shape of the
peaks in pesticide concentration should be similar to the
shape of the peaks in the stream hydrograph. This is plainly
suggested by the data in Figure 3. We call the sharpness of
these peaks in daily streamflow hydrographs the “flashiness”
and have defined a quantitative descriptor of this as the

Richards path length (LR). We define LR as the total length
of line segments connecting points on a hydrograph divided
by the median flow (q̃) and time period monitored (tN):

In this equation, the summation is carried out over all N
times (tt) for which streamflows (qt) are measured. For the
typical case in which we applied this equation (a year-long
daily hydrograph), tN is simply the number of days in the
year and the second term within the radical is always unity.
The appearance of median flow and time period monitored
in the denominator provides normalization of this parameter
with respect to the units used for streamflow and for the
time period considered. We calculated Richards path length
for all of the USGS watersheds and the four WQL watersheds
(see Figure 5). It exhibits a power-law relationship with scale,
but other variables (most likely soil runoff potential) introduce
considerable scatter. Richards path length is correlated with
the Hurst coefficient of temporal persistence (15), but the
former offered improved explanatory power in the relation-
ships tested here. Both provided far better fits than watershed
area itself in the prediction of MDC. It should be noted that
because the path length values shown in Figure 5 are based
on daily average streamflow data, they understate the “true
flashiness” of very small streams, which can exhibit sharp
temporal variability on a time scale of less than 1 day. We
merely point out this limitation and note that Richards path
length is itself a fractal quantity in time whose value would

FIGURE 2. Maps show the stream networks upstream of four points being monitored by the Heidelberg College Water Quality Laboratory.
The given mean stream length is the average of each branch shown here.

LR )

∑
t)1,N

x(qt - qt-1)2 + (tt - tt-1)2

tN*q̃
(1)
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be found to increase as the time increment used in its
determination is decreased.

We developed both pesticide-specific regression equations
for MDC and regressions across multiple pesticides using
combinations of the two common mobility and persistence
parameters, KOC (soil adsorption coefficient) and DT50 (50%
dissipation time in soil). The atrazine-specific equation for
MDC is

where P95 is the 95th percentile of atrazine concentration.
R2 for this regression was 0.68. Using this equation, we
calculated atrazine MDC and plotted it as a function of
watershed atrazine use intensity for the USGS data set (see
Figure S2 in the Supporting Information). This figure suggests
that atrazine MDC is directly proportional to use intensity
except at very low atrazine use, where there appears to be
a small level of background contamination, as evidenced by
the non-zero y-intercept in the fitting equation. Similar
models were obtained for other pesticides, and a pesticide-
general model is given in the Supporting Information.

PRZM Modeling. The U.S. EPA computer model PRZM
v 3.12 beta (16) was used to obtain estimated edge-of-field
concentrations in runoff water and on eroded soil. Table S1
in the Supporting Information lists the compounds included
in the simulations and the physical properties used for each.
The simulations were conducted using 30 years (1961-1990)
of daily meteorological data for Toledo, OH (17), assuming
a single application per year at a rate of 1 kg/ha. This use rate
was selected, rather than the maximum label rate, for simple
convenience in order to avoid the need for subsequent
normalization. The impact of this assumption is negligible
due to the linear nature of the PRZM model (16).

To identify the appropriate soils for the PRZM simulations,
the soils used for corn production in the 12 northeastern
counties of Ohio (Defiance, Fulton, Hancock, Henry, Lucas,
Ottawa, Paulding, Putnam, Sandusky, Seneca, Williams, and

Wood) were examined. These counties include the water-
sheds in the WQL data set. The 1992 National Resources
Inventory (18) was used to identify soils used for corn
production in these counties. The NRI data listed 42 different
soils as being associated with corn production. Of these, four
soils (Hoytville, Blount, Toledo, and Mermill) accounted for
52% of the acreage. Soil property data for these soils were
obtained from the SOILS-5 database (19). Selected properties
are summarized in Table S2 of the Supporting Information.

For the PRZM simulations, the field was 1 ha in area, with
a 2% slope and a 45-m hydraulic length. The Manning’s
roughness coefficient for overland flow as set at 0.014. The
application date was assumed to be April 21 for all surface-
applied compounds. Surface application without incorpora-
tion was simulated for all compounds except butylate, which
was uniformly incorporated to 4 cm and had an earlier
application date, April 18. All simulations assumed applica-
tion to bare ground with no spray drift. Spray drift was not
included due to the extremely small area occupied by river
surfaces within these modeled watersheds, and the lack of
evidence in the monitoring data for spray drift as a major
contributor to surface water residues (Figure 3). We calculated
daily edge-of-field concentrations by summing the total
amount of pesticide in both dissolved and sorbed forms and
assuming this completely dissolved in the amount of water
associated with the runoff event. This neglects the effect of
sedimentation that would typically reduce concentrations,
and should therefore be viewed as providing an upper bound
to the true dissolved concentration.

Fractal Modeling Theory. Any particular variable (v) that
displays spatial scaling behavior may be said to “scale in
distribution” such that the statistical moments (e.g., mean,
variance and skewness) of the probability density function
(pdf) of v can be represented at different scales by relatively
simple equations and few parameters. In this case, we are
addressing the temporal moments of concentration at each
spatial scale. Rather than describing the entire pdf, however,
our interest is focused on only the more extreme quantiles
of the distribution that can be estimated from given detection

FIGURE 3. Surface water monitoring results from the Water Quality Laboratory. Each plot shows daily streamflow per unit area (Q/A) and
concentrations of four herbicides: acetochlor (AC), alachlor (AL), atrazine (AT), and metolachlor (ME) during 1996, a high runoff year.

log10(MDC - P95) ) 1.8 × log10(P95) +
1.1 × log10(LR) - 0.75 (2)
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limits and frequencies of sample collection (90th, 95th, and
99.7th, in particular).

Self-similarity or scale-invariance, which states that certain
properties of fractals are independent of scale, is seen in the

plan geometry of rivers in Figure 2. Without having the scale
present or some form of prior knowledge, one cannot discern
the size of the river network from the map alone. Likewise,
our subsequent results suggest that the characteristic branch-

FIGURE 4. Each graph shows averages of several years of use-normalized upper quantile concentrations measured by WQL and daily
streamflows measured at USGS gauging stations. The 99.7th percentile corresponds to the maximum daily value within 1 year. The solid
circles are PRZM edge-of-field estimates of maximum daily concentrations, which are plotted at a watershed area of 30 km2, corresponding
to the appropriate watershed scale for such predictions (see text).
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ing and twisting drainage pattern of water moving across a
landscape has a profound level of self-similarity that is
apparently present even within the tiny rivulets of water
filtering downward through the soil pores. Because pesticides
are carried along these same fractal paths, their concentra-
tion-time profiles exhibit a particular type of broadening
with distance traveled defined here as scale-invariant disper-
sion. We model this scale-invariant dispersion through both
power-law relationships and a particular analytical solution
to the convection-dispersion equation (the PRZM-CDE
model, see the Supporting Information), both of which appear
to describe the manner by which peak pesticide concentra-
tions in rivers are impacted by scale.

Results and Discussion
Comparison of PRZM Estimates with Observed Concen-
trations at Different Scales. As shown in Figure 6, we found
that that the mean of the PRZM edge-of-field estimated
concentrations for atrazine, metribuzin, and metolachlor are
all very close to the average values seen in the smallest two
WQL watersheds: Rock Creek and Honey Creek. As previously
mentioned, the observed MDC values shown in Figure 6 have

been normalized to a use rate of 1 kg/ha through the
assumption that concentrations vary linearly with watershed
use intensity.

The data in Figure 6 demonstrate the hypothesized fractal
behavior for peak daily concentrations as a function of
watershed scale. Results for additional compounds are
summarized in Table 1. It is worth noting that the simple
equivalence of PRZM edge-of-field estimated concentrations
with observed monitoring data is likely due to the fact that
the WQL watersheds are typified by high runoff soils with
little base flow, such that most of the water in the streams
at the times that peak pesticide concentrations occur is direct
surface runoff water. In regions with different soils or higher
base flow, significant dilution would be expected to occur,
lowering the concentrations. This may be reflected in the
somewhat lower average concentrations seen for the USGS
data versus the WQL data.

Log-log plots were formed of the multi-year average
maximum daily concentrations of all pesticides listed in Table
1 as a function of watershed area for the four WQL watersheds.
Only atrazine, metolachlor, and metribuzin were found to
have slopes significantly different from zero, and all of these
were negative. These slopes are listed in Table 2, as are the
slopes found for analogous graphs of observed maximum
daily streamflows and the predictions of the PRZM-CDE
model described in the Supporting Information. The slopes
for observed maximum daily streamflow and observed
maximum daily concentrations of both atrazine and meto-
lachlor are all statistically indistinguishable from each other
and fall in the narrow range of -0.17 to -0.21. We
hypothesizesbut leave for others to provesthat this slope
is related to a fractal dimension of the larger Lake Erie
drainage basin containing these four watersheds.

Use of CDE To Model Scaling Effects. In an attempt to
develop a theoretical basis for these somewhat noisy trends
in the data, we have pursued fits of the CDE model solution
to the observed data (see the Supporting Information). We
found that the CDE model fit the shape of the peaks quite
well. Interestingly, the fitted k values for streamflow and
atrazine are very close to the k values reported elsewhere
(20) for the leaching of unretained and retained solutes,
respectively. We interpret this to be direct experimental

FIGURE 5. Richards path length (LR) calculated for 1 year of streamflow data at the 89 USGS monitoring sites and during 1984-2000 at
the four WQL watersheds. Quartile boxes, means, and individual annual values are plotted for the WQL data. The line connects the four
mean values.

FIGURE 6. PRZM edge-of-field estimates represent the area-
weighted averages for four modeled soils and are plotted at a
watershed area of 30 km2 as in Figure 4. Open circles are multi-year
averages across years that had observed MDC values for all four
WQL watersheds. Ten years met this criterion for all three of these
pesticides: 1985, 1988-1991, and 1994-1998. Observed maximum
daily concentrations are adjusted to a use rate of 1 kg/ha through
the assumption that concentration is linearly proportional to use
intensity within a site and year.
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evidence for the scale-invariant dispersion that apparently
governs solute transport across many orders of magnitude
of spatial and temporal scale. As described in the Supporting
Information, we have developed a simple hybrid model
(PRZM-CDE) in which edge-of-field PRZM concentrations
are transformed to a watershed scale.

We explore the ability of this PRZM-CDE model to simulate
scale effects in Figure 7, which is analogous to the previous
Figure 4, except that the solid symbols and lines are those
determined by the PRZM-CDE model, and the scattered open
symbols correspond to measured values. We show the results
for 1985, 1988, 1989, and 1990, the four years for which we
are able to directly compare estimated and measured values.
We also show PRZM estimates for 1961, 1963, and 1970, which
correspond to the maximum, minimum, and median runoff
years from the 30-year PRZM simulation of atrazine behavior.
In Figure 7h, we compare the multi-year averages for all
years in which either modeling or observed values are
available: these seven modeled years and the multi-year
average observed atrazine concentrations during the period
1984-1999. We also include standard errors for the predicted
and observed MDC values. These standard errors overlap for
all four watersheds, suggesting that the model reliably predicts
peak atrazine concentrations in these watersheds. Table 2
shows that the slopes of these predicted and observed
maximum daily concentration plots are statistically indis-
tinguishable (at the 0.05 significance level). In all cases
studied, the PRZM-CDE model appears to mimic the
observed scaling behavior of these three percentiles (P90,
P95, and P99.7) extremely well.

One apparent anomaly in both Figures 4 and 7 deserves
some additional discussion. In our analysis of these data, we
have often found situations where the predicted and observed
values of MDC in Rock Creek are lower than those in Honey

Creek, the reverse of what is expected based on their relative
areas. This may be due to the fact that the mean time for
pesticide runoff to reach the monitoring location in Rock
Creek is only about 36 h. This causes the main peak there
to be so narrow in time that the 99.7th percentile concentra-
tion may be well down the shoulder of the primary chemo-
graph peak, such that it is lower than that found in the larger
Honey Creek watershed. A little reflection on this topic
suggests that the x-axis in these plots of concentration versus
watershed area may be equivalently considered to represent
the time period over which field-scale runoff events are mixed.
Watershed areas on the order of 30-100 km2 correspond to
a mixing time of about 1 day (depending on watershed
geometry and streamflow velocity) and are therefore directly
comparable to the daily runoff concentrations being reported
by PRZM. This explains why it is appropriate to plot the
unprocessed PRZM predictions at a watershed scale of 30
km2 (as in Figure 4). Another implication of this observation
is that extrapolation of the lines in Figure 6 to smaller
watershed areas is inappropriate for daily concentrations.

Regulatory Consequences. This work was begun in an
effort to fill a key regulatory needsthe ability to predict peak
crop chemical concentrations in rivers across a wide range
of watershed scales. We have shown that the mathematical
implications of fractal geometry offer two specific methods
for incorporating the effect of scale into such regulatory
assessments. The first approach is suitable for simple
regression modeling. In this method, one uses the linear
nature of log-log plots of maximum daily concentrations
versus watershed area to model the effect of scale on peak
concentrations. The second approach is suitable for more
refined modeling in which the entire daily time series and/
or frequency distribution is required. In this case, one uses
the theory of scale-invariant dispersion to convert daily edge-
of-field concentrations into realistic time series of concen-
trations for the watershed scale of interest. A simple computer
program for carrying out these calculations is provided (see
Supporting Information). In both cases, the techniques
introduced here could be directly incorporated into any
regulatory assessment where one wishes to account for the
effect of scale.

An interesting theoretical finding is our observation that
the same CDE solution accurately characterizes both leaching
within the field (20) and long-range watershed transport. We
interpret this to mean that scale-invariant dispersion governs
these natural solute transport processes, whether vertically
through the top few meters of a field over a period of several
years or across hundreds of kilometers in a watershed over
a period of several days. The apparent underlying cause is
that water (by which the pesticides move) follows the same
kind of fractal paths while moving either through or over

TABLE 1. Multi-Year Average Predicted and Observed Maximum Daily Concentrations (PPB), with All Monitoring Data Normalized
to Use Rate Assumed in Modeling (1 kg/ha)

PRZM predictions (avg of all 30 yr) by soil WQL monitoring data (1984-1999) by location

pesticide Blount Hoytville Mermill Toledo avga
Rock
Creek

Honey
Creek

Sandusky
River

Maumee
River

USGSb

monitoring

acetochlor 132.8 104.7 47.1 113.1 100.1 170.7 257.8 120.0 49.4 40.2
alachlor 122.3 93.2 46.2 100.9 90.7 11.1 31.9 19.5 14.1 37.9
atrazine 160.7 122.6 73.6 132.6 121.7 102.9 106.1 61.8 45.6 50.8
butylate 5.3 3.9 3.5 4.5 4.1 7.9 6.6 5.7c 3.3c 2.0
cyanazine 140.2 104.8 61.7 110.7 104.0 45.8 67.1 31.4 60.1 40.8
EPTC 141.1 102.9 63.0 112.0 103.6 279.0 129.3 1076.1 162.1 35.2
metolachlor 144.0 105.3 66.7 114.3 106.3 112.5 76.8 57.1 38.4 32.6
metribuzin 232.9 213.6 81.8 236.3 194.9 185.4 163.0 142.7 132.7 42.7
simazine 156.7 121.6 70.9 130.7 119.7 376.8 91.2 106.2 339.2 59.2

a Area-weighted average of four soils based on percent areas shown in Table S2. b Simple average of all data with five outlier values (predicted
MDC > 1 ppm) removed. c Outlier values removed as in Figure 4: Maumee (1992) and Sandusky (1990, 1998).

TABLE 2. Statistical Comparison of Slopes of log-log Plots of
Various Parameters vs Watershed Areaa

parameter (all multi-year avgb) slopec

obsd max daily streamflow -0.21 a
obsd max daily concn of atrazine -0.17 a
predicted (PRZM-CDE model) max daily concn

of atrazined
-0.25 a

obsd max daily concn of metolachlor -0.19 a
obsd max daily concn of metribuzin -0.064 b

a No other pesticides had observed maximum daily concentration
slopes significantly different from zero. b Multi-year averages include
all years for which observed values are available, during the period
1984-1999. c Slope values followed by the same letter are not statisti-
cally different from each other at the 0.05 level of significance. d Average
of all modeled years shown in Figure 7 (1961, 1963, 1970, 1985, 1988,
1989, 1990).
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soils, thus exhibiting self-similarity across many orders of
magnitude.

An important practical finding of this work is the close
correspondence of edge-of-field runoff concentrations cal-

culated by PRZM with maximum daily values observed in
smaller watersheds. However, it is essential to note that this
encouraging result is based on the fact that all observed
concentrations have been normalized based on use intensity.

FIGURE 7. Solid symbols and lines in each graph are the upper-quantile atrazine concentrations (normalized to a 1 kg/ha use rate) as
predicted by the coupled PRZM-CDE model for the four WQL watersheds. Observed values shown as open symbols are use-normalized
observed values for the years shown (a-d) and multi-year averages (h). The multi-year average comparisons (h) include all years for which
modeling and monitoring results are available as well as standard errors for observed and predicted 99.7th percentile concentrations.
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Watersheds are usually selected for monitoring based on
intensity of use with the highest use intensity favored. It may
be possible to find small watersheds comprised essentially
of all agricultural land, while there will be areas of nonag-
ricultural land (and perhaps a wider variety of crops) in larger
watersheds. Thus, the use intensity in monitored watersheds
often decreases with increasing watershed area. Therefore,
actual concentrations are likely to be higher in small
watersheds than large watersheds selected for monitoring
based only on use intensity. By normalizing the concentra-
tions, the effect of use intensity is eliminated, while preserving
the scale effects.

A limitation to the PRZM-CDE modeling approach
presented here is that no in-stream loss mechanisms have
been included. This is a conservative assumption for regula-
tory purposes, and it appears to be a reasonable simplification
for the chemicals and watershed scales studied here.
However, the reduction of in-stream loss rates with watershed
scale in mass balance models such as SPARROW (21) suggests
that great care would be required in order to maintain
conservatism if such mechanisms were added to the PRZM-
CDE model.

In regulatory applications of these new modeling ap-
proaches, it would become necessary to select the appropriate
scale for the assessment of interest. In the case of drinking
water, this should be relatively straightforward based on
available information concerning the size of the watersheds
actually used as drinking water sources. In the case of
ecological assessments, it is likely that different scales would
be appropriate based on the particular organism or ecosystem
being evaluated. It is beyond the scope of this work to
recommend any particular watershed scale, but we have
endeavored to provide tools for conducting such scale-
dependent regulatory assessments once the appropriate scale
has been specified.
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